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Clustering



Clustering ordinal data

Common example is survey with questions answered on a scale from 1 to q
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Row clustering

Find groups of individuals with similar responses
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Column clustering

Find groups of variables that have similar responses
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Biclustering

Find groups of individuals and variables simultaneously
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Distance-based clustering

Assigns individuals to clusters, but requires distance metric
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Model-based clustering

Fits statistical model to each cluster, providing inference about cluster feature
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TL:DR

The key difficulties of clustering categorical data:

• It contains less information than numerical data, though ordinal data has
slightly more information than categorical data

• There are far fewer methods designed to handle it
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Approach 1: Treat the ordinal
data as numerical



How do we handle ordinal data?

A common approach is to convert ordinal data to numerical labels. . .
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How do we handle ordinal data?

. . . and then treat the numerical labels as numerical data

Essentially, we pretend it contains more information than it actually does
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Example: simulated ordinal data

This is a constructed example of ordinal data, with 500 observations and 10
variables. Each variable has 3, 4 or 5 categories.
The observations are in 3 clusters, in proportions 10%, 30% and 60%
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ID1 5 5 4 3 3 3 5 3 2 1
ID2 5 3 3 3 3 3 5 3 3 3
ID3 4 3 4 2 3 3 4 2 3 3
ID4 5 4 3 2 2 1 4 1 2 3
ID5 1 2 1 4 1 1 1 1 1 1
ID6 2 5 5 2 1 3 5 2 1 3

12



Example 1: simulated ordinal data

We can plot the first two principal components after standardizing the data:
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k-means

k-means is the most common clustering method, and it is based on distance and
variance

It iteratively reallocates observations to clusters to minimise the within-cluster
variances
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k-means

I tried 2 to 9 clusters, using 50 starts and up to 1000 iterations, and compared
the within-cluster sums of squares:
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Based on the elbow plot, the optimum number of clusters is 2
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k-means

We can use the Adjusted Rand Index to compare the cluster allocations to the
true ones without being affected by label switching

The Adjusted Rand Index theoretically ranges from -1 to 1, where 1 indicates a
perfectly matched pair of cluster allocations:

kmeans

ARI 0.6278382

This result is pretty good, and it’s certainly better than chance, which corresponds to 0
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k-means
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Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a common model-based clustering method
for numerical data

The data are assumed to arise from a mixture of multivariate Gaussian
distributions, and you specify the covariance structures when fitting the model

I will test the most flexible covariance structures, in which the variances and
correlations are allowed to vary amongst dimensions and amongst clusters
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Gaussian Mixture Models

The model is fitted using the EM algorithm, and the mclust GMM functionality
also uses hierarchical clustering to find the starting points for the EM algorithm
Scrucca L., Fraley C., Murphy T. B. and Raftery A. E. (2023) Model-Based Clustering,
Classification, and Density Estimation Using mclust in R. Chapman & Hall/CRC, ISBN:
978-1032234953, https://mclust-org.github.io/book/

Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification
and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.
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Gaussian Mixture Models

The model selection criterion is BIC, and the mclust form of BIC is higher for
better-fitted models
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Gaussian Mixture Models
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Gaussian Mixture Models

Use the Adjusted Rand Index again to check the GMM result against the true
clusters, repeating the ARI for k-means for comparison:

kmeans GMM

ARI 0.6278382 0.3592375

This result is better than chance, but worse than the result for k-means
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Approach 2: Treat the ordinal
data as ordinal



The problem with numerical labels
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The problem with numerical labels

The numerical labels may not accurately describe the spacing!

It would be just as valid to number the levels -54, -9, 39 and 240 as to number
them 1 to 4

The only detail the ordinal nature of the data specifies is the order, not the
spacing

So if we want to fit the data without making the assumption of equal spacing,
we should use methods that treat the data as ordinal
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CUB models

One type of model, designed originally by Domenico Piccolo, is specifically
designed for ordinal data that arise from questionnaires

Combination of Uniform and Binomial models assume that each individual
response to a particular question, and from a particular observation, has a
component which is the true opinion, modelled as a binomial, and another
component which is the uncertainty, modelled as a uniform

The original models were developed for regressing a single response variable on
covariates
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CUB models

Matteo Ventura has been working with Julian Jacques, Paola Zuccolotto and
Domenico Piccolo on clustering CUB models

The overall model is a nested mixture of mixtures

It has already proved useful for interpreting patterns of opinions from survey data

However, the code is not yet available as an R package
Ventura, M., Jacques, J. & Zuccolotto, P. “Model-Based Clustering of Multivariate Rating
Data Accounting for Feeling and Uncertainty.” Journal of Classification (2025).
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clustMD

The clustMD package was developed to cluster mixed-type data

It can handle a mixture of continuous, ordinal and nominal data

It assumes that there is a latent multivariate Gaussian underpinning all of the
data types

It requires more rows than columns for row clustering

McParland, D., Gormley, I.C. Model based clustering for mixed data: clustMD. Advances in
Data Analysis and Classification (2016) 10, 155–169.
https://doi.org/10.1007/s11634-016-0238-x

27

https://doi.org/10.1007/s11634-016-0238-x


Binary Ordinal Search

Binary Ordinal Search is a method proposed by Biernacki and Jacques that uses
ordinal-specific models

This method treats ordinal data as originating from a binary search process

The clustering algorithm is implemented in the ordinalClust package

It can cluster observations (rows) or variables (columns), or both at once

Biernacki, C., & Jacques, J. “Model-based clustering of multivariate ordinal data relying on a
stochastic binary search algorithm.” Statistics and Computing (2016) 26(5), 929-943.
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Binary Ordinal Search

For such a small dataset, it is difficult to fit more than 5 clusters, and we first
have to rearrange the variables so that all of the ones with the same number of
levels are gathered together in contiguous columns

The algorithm resets the C++ seed every time it runs, so we’ll retry the
algorithm multiple times, in order to avoid spurious solutions:

29



Binary Ordinal Search
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This is a model-based approach, like GMMs, so model selection is based on the
likelihood and on the integrated complete likelihood (ICL), and the higher values
indicate a better fit, so 5 is the best number of clusters
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Binary Ordinal Search
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Binary Ordinal Search

Use the Adjusted Rand Index again to check the GMM result against the true
clusters, repeating the ARI for k-means for comparison:

kmeans GMM BOS

ARI 0.6278382 0.3592375 0.6369881

32



clustord

clustord: github.com/vuw-clustering/clustord

https://cran.r-project.org/web/packages/clustord/index.html
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Why this package?

clustord can handle imbalanced data: it can identify small clusters (e.g. 4
observations out of 200), provided they’re distinct from the other clusters

clustord can cluster observations with missing data: for observations with
partial responses, clustord calculates likelihoods based on the remaining
responses, instead of dropping data or imputing values
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Why this package?

clustord fits a specified number of clusters each time

BUT some clusters may end up with no observations assigned to them, which
may indicate that a smaller number of clusters is suitable
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Why this package?

Clustering models akin to regression

Data matrix of response variables (Yij)

Clusters affect responses via a linear predictor ηij and we can also add other
effects to this model
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Ordinal models

Proportional odds ordinal model:

log
(

P (Yij ≥ k)
P (Yij < k)

)
= µk − ηij

Ordered stereotype ordinal model:

log
(

P (Yij = k)
P (Yij = 1)

)
= µk + ϕkηij

Note that both models use the same linear predictor term ηij
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Row clustering

ηij = αr for i ∈ r

This structure assumes that each observation’s responses are purely dependent
on which observation cluster it is in
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Column clustering

ηij = βc for j ∈ c

This structure assumes that each variable’s responses are purely dependent on
which variable cluster it is in
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Biclustering

ηij = αr + βc for i ∈ r and j ∈ c

This structure assumes that observation clusters and variable clusters both have
effects that change the response
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Row clustering with column effects

ηij = αr + βj for i ∈ r

This structure assumes that each observation’s responses are partially dependent
on which observation cluster it is in, but that the responses also vary by variable
Accounts for some variables having unusual response patterns 41



Row clustering with row covariates

ηij = αr + δT xi for i ∈ r

This structure incorporates covariates, additional information about observations,
that affects their responses
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Ordinal models

clustord is designed to cluster ordinal data with a fixed number of levels, but
it works on data with a varying number of levels, by treating all the columns as if
they have the maximum number of levels out of all of them

This works better if you incorporate column effects, because those can indirectly
model the variables with fewer response levels
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clustord

First try fitting the simplest clustord model, with only the row clusters and no
individual column effects: Y ~ ROWCLUST, and try 2 to 5 clusters

I will use the proportional odds model (POM), which is more restrictive than the
ordered stereotype model (OSM)
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clustord

The model selection criterion is BIC, but this form of BIC is lower for
better-fitted models
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clustord

Then try the model with individual column effects
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clustord

Compare the two types of models
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The model with column effects is clearly a better fit 47



clustord

−2 0 2 4

−
2

−
1

0
1

2
3

True clusters

PC1 41% of variation

P
C

2 
8%

 o
f v

ar
ia

tio
n

−2 0 2 4

−
2

−
1

0
1

2
3

clustord result

PC1 41% of variation

P
C

2 
8%

 o
f v

ar
ia

tio
n

48



clustord

Use Adjusted Rand Index again to assess the performance

kmeans GMM BOS clustord

ARI 0.6278382 0.3592375 0.6369881 0.7399687
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Simulating ordinal data

I am working on a full simulation study comparison of clustering methods,
including clustord, and a real data study using the Quality of Life dataset
analysed in the past by ordinalClust

This is just one result, a single demonstration, but I did make life a bit harder by
using OSM, which is more flexible than POM, to simulate the ordinal data, and
by having varying numbers of levels in the variables
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Simulating ordinal data

I simulated a matrix of responses, Yij, with qj levels per variable, indexed
k = 1, . . . , qj and qj ∈ {3, 4, 5}

I used the ordered stereotype model with cluster effects α = (−3, 0, 3) and
additional effects of individual columns βj ∈ [−1, 1]

For observation/row i in cluster g

log
(

P (Yij = k)
P (Yij = 1)

)
= µjk + ϕjk(αg + βj)
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Simulating ordinal data

It is also possible to simulate ordinal data by simulating data from normal
distributions and selecting cut points to split the values up into the different
ordinal levels

However, in order to obtain variables with the full flexibility of more flexible
ordinal models, you have to play around with the cut points, not just vary the
shape of the latent normal distribution

Methods that treat ordinal data as normal with cut points often do not fit the
cut points in a data-driven way
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Simulating ordinal data

The following two distributions are 1000 data points simulated from an ordered
stereotype model with random µk and ϕk values, α = −2 and β = 1, and 1000
data points simulated from a standard normal distribution with cut points -0.2,
0.2, 0.4 and 1.2
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Simulating ordinal data
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Genetic clustering



DNA dataset

Microsatellite data looks numerical but is ordinal/nominal categorical
SNP data is binary
Diploid genetic data has more than one response per variable (2 copies of each
chromosome)
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Existing methods

Many existing methods for performing unsupervised genetic clustering

STRUCTURE, fastSTRUCTURE, fineSTRUCTURE, ADMIXTURE, BayesAss,
and more. . .
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Bayesian method STRUCTURE
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Bayesian method STRUCTURE
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Different DNA types

Biologists also collect mitochondrial DNA haplotypes

Ecologists use separate analyses for mitochondrial DNA
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Different DNA types

Analyse nuclear DNA and mitochondrial DNA separately
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Genetic and non-genetic data

They have additional dietary isotope data, or could collect other environmental or
behavioural covariates. . .
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Genetic and non-genetic data

https://tohoravoyages.ac.nz/track-the-2021-tohora/
Image by Michaël CATANZARITI, under the licence Creative Commons Attribution-Share Alike
3.0 Unported 62
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Genetic and non-genetic data

Current approach: analyse nuclear DNA and mitochondrial DNA separately 63



Modified Bayesian clustering

Adam Glucksman is working on combining nuclear and mitochondrial DNA in the
same clustering analysis

Mitochondrial DNA provides extra evidence about which population the animals
may have originated in
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Modified Bayesian clustering

Can we modify this model to incorporate isotope data?
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Modified Bayesian clustering

We also want to incorporate isotope data, which captures where the individual
feeds

Feeding ground preferences are driven by maternal inheritance, and mitochondrial
DNA is also maternally inherited

So the individual’s feeding ground preferences provide extra information about
their mother’s population of origin
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Modified Bayesian clustering

Can we modify this model to incorporate isotope data?
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Thanks!


	Clustering
	Approach 1: Treat the ordinal data as numerical
	Approach 2: Treat the ordinal data as ordinal
	Genetic clustering
	Thanks!

